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interaction
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Barcelona, Diagonal 647, 08028 Barcelona, Spain, and IFAE

Received 8 May 1996

Abstract. The general four-parameter point interaction in one-dimensional quantum mechanics
is regulated. It allows the exact solution, but not the perturbative one. We conjecture that this
is due to the interaction not being asymptotically free. We then propose a different breakup
of unperturbed theory and interaction, which now is asymptotically free but leads to the same
physics. The corresponding regulated potential can be solved both exactly and perturbatively,
in agreement with the conjecture.

1. Introduction

The easiest point interaction in one-dimensional quantum mechanics was introduced by
Fermi more than 60 years ago [1]. It corresponds to a Diracδ, and its mathematical
interpretation came almost thirty years later [2]. It is now an almost standard example in
elementary quantum mechanics. In one dimension, however, and only in one dimension,
there exists a much more complex point interaction, which in its most general form depends
on four real parameters [3]. One of these corresponds to the so-calledδ′ potential, an
interaction surrounded with confusion, controversy and issues of interpretation [4–8]. There
are of course no difficulties if the problem is solved in terms of boundary conditions
which make sure that the Hamiltonian is self-adjoint. Even its Brownian measure has been
contructed [9]. A deeper physical understanding, however, requires a regulated potential
which, when the regulator is eventually removed, leads to the same physics. Surprisingly
it does not seem to exist in the published literature, and it even has been put forward that
the problem does not allow regulation. The nearest one has come to this is, on the one
hand, a regulated Hamiltonian, which is not self-adjoint, although it converges to one which
is self-adjoint when the short distance cutoff is removed [10]; and on the other, the proof
that a regulator exists for three parameters, which include the so-calledδ2 [11]. This, to a
physicist, is not a satisfactory state of the art.

Here we give a complete solution to the problem. We find a regulated potential which
corresponds to a self-adjoint Hamiltonian and reproduces all the four-parameter physics.
However, we then show that it does not allow us to solve the problem perturbatively,
i.e. it leads to a perturbation theory which is not renormalizable. We argue that this is
because the interaction is not asymptotically free, as there is scattering at infinite energy.
We then reformulate the problem by proposing a different partition of the unperturbed
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Hamiltonian and the interaction. The new regulated potential now allows both exact and
perturbative solutions. This is consistent with our conjecture that asymptotic freedom is
necessary for perturbative renormalizability in quantum mechanics, as the new interaction
is asymptotically free.

We start with a section where the physics of the four-parameter boundary conditions, as
well as all the limits and particular cases, are reviewed. For the next two sections, which
contain all the results, readers not used to the language of quantum field theory as applied
to quantum mechanics may find [12] helpful. Our units are ¯h = 2m = 1.

2. The boundary conditions and its physics

The most general point interaction in one dimension is described by a free Hamiltonian on
the real line with the origin excluded where the boundary values of the wavefunction and
its derivative satisfy the constraints [9]:(−ψ ′L

ψ ′R

)
=

(
ρ + α −ρeiθ

−ρe−iθ ρ + β
) (

ψL

ψR

)
(2.1)

which ensures self-adjointness of the Hamiltonian. Hereρ > 0, α, β and 06 θ < 2π
are real parameters and the subindices indicate whether the value of the wavefunction or its
derivative, which both have to be finite, correspond to the boundary of the negative halfline
(L) or the positive halfline (R). Equation (2.1) can also be written, forρ > 0, as(

ψ ′R
ψR

)
= e−iθ

(
1+ β/ρ α + β + αβ/ρ

1/ρ 1+ α/ρ
) (

ψ ′L
ψL

)
(2.2)

which is more adequate for taking theρ →∞ limit.
Note that equations (2.1) and (2.2) are invariant under

ψR↔ ψL

ψ ′R↔ −ψ ′L
(2.3)

which corresponds to the parity operation,x ↔ −x, together with

α ↔ β

θ ↔ −θ
(2.4)

which will therefore correspond to changing the sign of the antisymmetric interaction. This
implies violation of parity invariance, as long asα 6= β or θ 6= 0.

For ρ = 0, equation (2.1) reduces to

− ψ ′L = αψL

ψ ′R = βψR

(2.5)

which corresponds to aL2(R−) andL2(R+) problem respectively, unrelated to each other,
with no probability flowing from one to the other. The parameterθ becomes irrelevant. If,
furthermore,α = β = 0 we have

ψ ′L = ψ ′R = 0 (2.6)
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which are Neumann boundary conditions on both halflines.
For α = β, θ = 0, equation (2.1) becomes

ψ ′R− ψ ′L = α(ψR+ ψL)

ψ ′R+ ψ ′L = (2ρ + α)(ψR− ψL)
(2.7)

which corresponds to a symmetric interaction. The first condition refers to the even
wavefunction, and the second to the odd. If furthermoreα = 0 then

ψ ′R = ψ ′L
ψ ′L = ρ(ψR− ψL)

(2.8)

which corresponds to the ill-named (it is symmetric!)δ′ interaction, which only acts on odd
wavefunctions. If finallyρ →∞ there is no interaction,

ψ ′R = ψ ′L
ψR = ψL .

(2.9)

For ρ →∞ andθ = 0, (2.2) reduces to

ψR = ψL

ψ ′R− ψ ′L = (α + β)ψL

(2.10)

which is the δ interaction. The parameterα − β is irrelevant. It is also a symmetric
interaction which only acts on even wavefunctions.

For ρ →∞ andα + β = 0 equation (2.2) becomes

ψ ′R = e−iθψ ′L

ψR = e−iθψL

(2.11)

which shows thatθ is just a constant phase shift in crossing the origin. The breaking of
time reversal invariance due to the noninvariance of the boundary conditions under complex
conjugation is made clear in these last equations, but is seen already in equation (2.1).

For ρ > 0, if two bound states exist their energies are given by√
−E0 = −ρ − 1

2(α + β)± 1
2

√
4ρ2+ (α − β)2 > 0 . (2.12)

They do not depend onθ . When only one bound state exists its energy is given by the
upper sign expression of (2.12). Forρ = 0 at most one bound estate exists, and its energy
is √

−E0 = −α > 0 (2.13)

which requiresα = β < 0, so that the eigenvalues inR+ andR− are the same.
For the scattering states,E ≡ k2 > 0, and defining the scattering amplitudes according

to

ψ(x) = eikx + ieik|x|(f+(k)θ(x)+ f−(k)θ(−x)) (2.14)
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with θ(x) = 0 for x < 0 andθ(x)+ θ(−x) = 1, we have

f+(k) = i + 2kρ

1
e−iθ

f−(k) = −i

1

(
k2− ik(α − β)+ ρ(α + β)+ αβ) (2.15)

where

1 ≡ k2+ ik(2ρ + α + β)− ρ(α + β)− αβ . (2.16)

The high-energy limit of the scattering amplitudes is

lim
k→∞

f+(k) = i

lim
k→∞

f−(k) = −i
(2.17)

so that there is scattering even at infinite energy, and the wavefunction becomes

lim
k→∞

ψ(x) = 2 cos(kx)θ(−x) (2.18)

which corresponds to total reflection with Neumann boundary condition.
At low energies

lim
k→0

f+(k) = i

lim
k→0

f−(k) = i
(2.19)

and

lim
k→0

ψ(x) = 2i sin(kx)θ(−x) (2.20)

which also corresponds to total reflection, but with Dirichlet boundary condition.
For ρ = 0 equation (2.15) becomes

f+(k) = i

f−(k) = −i
k − iα

k + iα

(2.21)

which again correspond to total reflection. The parametersβ and θ are then of course
irrelevant.

For α = β = θ = 0 we obtain

f+(k) = i
k

k + 2iρ
= −f−(k) (2.22)

which is theδ′ scattering amplitude.
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For ρ →∞, θ = 0 one obtains theδ scattering amplitude,

f+(k) = −i
α + β

2ik − (α + β) = f−(k) . (2.23)

Note that now the scattering amplitudes vanish at high energies, i.e. the limitsρ →∞ and
k→∞ do not commute.

The optical theorem reads

2 Imf+(k) = |f+(k)|2+ |f−(k)|2 . (2.24)

It will be convenient to introduce

fs(k) ≡ 1
2

(
f+(k)+ f−(k)

)
fa(k) ≡ 1

2

(
f+(k)− f−(k)

)
.

(2.25)

One can check that for a symmetric interaction, i.e.α = β, θ = 0, the optical theorem
holds for the symmetric and antisymmetric scattering amplitudes

Im fs(α = β, θ = 0) = |fs(α = β, θ = 0)|2

Im fa(α = β, θ = 0) = |fa(α = β, θ = 0)|2
(2.26)

which allows a straightforward introduction of phase shifts. This is because a symmetric
interaction in one dimension is equivalent to a rotationally invariant interaction in more
dimensions.

3. The strong regulated potential

From the work of Carreau [10] we are led to consider the following potential:

V (x) = θ(x + ε)θ(ε − x)
(
W(ε)+ 2iR(ε)

d

dx

)
+ (
B(ε)− iR(ε)

)
δ(x − ε)

+ (
A(ε)+ iR(ε)

)
δ(x + ε) (3.1)

whereW(ε), R(ε), A(ε) andB(ε) are real functions of the short distance regulatorε > 0,
which eventually is taken to be zero. The terms which containR(ε) are imaginary and
violate time reversal invariance. They will take care of theθ parameter and depend on the
momentum. The Hamiltonian

H = − d2

dx2
+ V (x) (3.2)

is self-adjoint, and althoughV (x) contains Dirac deltas it is sufficiently regulated to allow
for its exact solution without further regulation. One can regulate the Dirac deltas too, but
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this complicates the analysis unnecessarily. One can then show that one recovers (2.1) in
the limit ε → 0 if

W(ε) = 1
4ρ

2f 2(ρε)

R(ε) = − θ
2ε

A(ε) = − 1
2ρf (ρε)+ ρ + α

B(ε) = − 1
2ρf (ρε)+ ρ + β

(3.3)

where the functionf (x) is given by the smallx condition

lim
x→0

exp
(
xf (x)

)
f (x)

= 1

lim
x→0

xf (x)→∞
(3.4)

which, for smallx, implies

f (x) ∼ − ln x + ln(− ln x)

x
. (3.5)

Note that terms subdominant with respect to the ones shown in (3.3) are irrelevant in the
ε → 0 limit.

For finite ρ one does not need the functionf (x) beyond equation (3.5), but if one is
interested in the limitρ →∞ one would need anf (x) such that

lim
x→∞

exp
(
xf (x)

)
f (x)

= 1

lim
x→∞ xf (x)→∞

(3.6)

but no solution to this system exists, so that the regulated potentialV (x) is only valid for
finite ρ. Theρ →∞ limit has to be taken after the continuum limitε → 0 is taken. Note
that for theρ → 0 limit, W(ε), A(ε) andB(ε) also diverge, so that theρ → 0 limit also
has to be taken after theε → 0 limit. Finally, if one is interested in high energies, also
the k → ∞ limit has to be taken after the regulator is removed,ε → 0, asV (x) leads
to no scattering at high energies, while equation (2.1) shows scattering at high energies.
The reason whyV (x) does not scatter at high enough energy is that it corresponds to wells
and barriers of finite depth and height (recall that the Diracδ’s can be regularized as well),
which can be neglected as compared to the kinetic energy ask becomes larger and larger.
The presence of a contribution linear ink does not spoil the argument. In other words,
at high energy the physics is determined by the regulator, and we are only interested in
regulator-independent physics.

The potential is symmetric forα = β, θ = 0 as thenA(ε) = B(ε) andR(ε) = 0. It
would be antisymmetric forW(ε) = 0 andA(ε) = −B(ε), but no values of the parameters
ρ, α, β and θ allow for an antisymmetric potential. This is why a genuineδ′ does not
exist.
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Consider now a perturbative expansion based on the Lippmann–Schwinger equation for
the Hamiltonian of (3.2) withV (x) given by (3.1), but withW(ε), R(ε), A(ε) andB(ε)
to be fixed in such a way that asε → 0 one reproduces the perturbative expansion of
the scattering amplitudesf+(k) andf−(k) given in (2.15) and (2.16). As the free theory
corresponds toα = β = θ = 0, ρ →∞, one expands for smallα, β and θ and largeρ.
To first order one obtains

f
(1)
+ (k) = −θ − α + β

2k
+ k

2ρ

f
(1)
− (k) = −α + β

2k
− k

2ρ
.

(3.7)

One can see that the second order term is imaginary.
From the Lippmann–Schwinger equation

ψ(x) = eikx −
∫

dy Gk(x − y)V (y)ψ(y) (3.8)

whereGk(x) is the free outgoing propagator

Gk(x) = i

2k
eik|x| (3.9)

and equation (2.14) one obtains the first Born approximation

f
(1)
+ (k) = 2εR(1)(ε)− 1

2k

(
2εW(1)(ε)+ A(1)(ε)+ B(1)(ε)

)
f
(1)
− (k) = − 1

2k

(
2εW(1)(ε)+ A(1)(ε)+ B(1)(ε)

)+ iε
(
A(1)(ε)− B(1)(ε)

)
+ kε2

(
2
3εW(1)(ε)+ A(1)(ε)+ B(1)(ε)

)+O(k2) .

(3.10)

This implies, comparing with (3.7), that in theε → 0 limit

R(1)(ε) = − θ
2ε

2εW(1)(ε)+ A(1)(ε)+ B(1)(ε) = α + β

ε
(
A(1)(ε)− B(1)(ε)

) = 0

(3.11)

but the term linear ink in (3.7) cannot be obtained forf+(k) from (3.10). We then will
have to consider it a second-order term and thus

ε2
(

2
3εW(1)(ε)+ A(1)(ε)+ B(1)(ε)

) = 0 (3.12)

holds furthermore. Equations (3.11) and (3.12) have solutions forW(ε), R(ε), A(ε) and
B(ε) to first order.
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The second Born approximation gives, for the real part,

Ref (2)+ (k) = 2εR(2)(ε)− 1

2k

(
2εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)
+ε
k

(
R2
(1)(ε)−

2

3
ε2W 2

(1)(ε)− εW(1)(ε)
(
A(1)(ε)+ B(1)(ε)

)− A(1)(ε)B(1)(ε))

+ 4

3
kε3

(
2

5
ε2W 2

(1)(ε)+ εW(1)(ε)
(
A(1)(ε)+ B(1)(ε)

)+ 2A(1)(ε)B(1)(ε)

)
+O(k2) (3.13)

and

Ref (2)− (k) = − 1

2k

(
2εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)− ε

2k

(
4

3
ε2W 2

(1)(ε)− 2R2
(1)(ε)

+ 4εW(1)(ε)B(1)(ε)+ B2
(1)(ε)− A2

(1)(ε)+ 2A(1)(ε)B(1)(ε)

)

+ kε2

(
2

3
εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)

+ 1

3
kε3

(
4

5
ε2W 2

(1)(ε)− 2R2
(1)(ε)+ 4εW(1)(ε)B(1)(ε)

+ B2
(1)(ε)− A2

(1)(ε)+ 2A(1)(ε)B(1)(ε)

)
+O(k2) (3.14)

where the possible second-order counterterms of the first Born approximation have been
included, as corresponds to a renormalizable pertubation theory. As the second order
contributions to the scattering amplitudes are purely imaginary, (3.13) and (3.14) are bound
to just reproduce the terms linear ink of (3.7). This implies, in theε → 0 limit

εR(2)(ε) = 0

1

2

(
2εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)
= ε

(
R2
(1)(ε)−

2

3
ε2W 2

(1)(ε)− εW(1)(ε)
(
A(1)(ε)+ B(1)(ε)

)
− A(1)(ε)B(1)(ε)

)
4

3
ε3

(
2

5
ε2W 2

(1)(ε)+ εW(1)(ε)
(
A(1)(ε)+ B(1)(ε)

)+ 2A(1)(ε)B(1)(ε)

)
= 1

2ρ

(3.15)

from (3.13) and
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2εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)
= − ε

(
4
3ε

2W 2
(1)(ε)− 2R2

(1)(ε)+ 4εW(1)(ε)B(1)(ε)+ B2
(1)(ε)

− A2
(1)(ε)+ 2A(1)(ε)B(1)(ε)

)
− 1

2ρ
= ε2

(
2

3
εW(2)(ε)+ A(2)(ε)+ B(2)(ε)

)

+ 1

3
ε3

(
4

5
ε2W 2

(1)(ε)− 2R2
(1)(ε)+ 4εW(1)(ε)B(1)(ε)

+ B2
(1)(ε)− A2

(1)(ε)+ 2A(1)(ε)B(1)(ε)

)

(3.16)

from (3.14). One can convince oneself that the system given by equations (3.11), (3.12),
(3.15) and (3.16) has no solution. Perturbation theory starting from equation (3.2) does not
work; it is not renormalizable.

One can understand why. Perturbation theory in 1/ρ is based on the fact that the theory
is free for largeρ (andα = β = θ = 0). Recall, however, that the exact regulated potential
whose form we are using in this perturbative approach gives the correct large-ρ behaviour
if first the regulator is removed takingε → 0. But perturbation theory is taking these limits
in reverse order, it assumes largeρ for fixed ε. The non-renormalizability just reflects the
non-commutativity of theρ →∞, ε → 0 limits.

A tell-tale sign that perturbation theory is not renormalizable is given by the fact that
the theory is not asymptotically free, in other words, that it interacts even at infinite energy.
This is saying that the potential diverges very strongly (stronger than a Dirac delta) as
ε → 0. It is too strong to allow iterations as are done in perturbation theory.

This leads to the question of whether we are facing a genuinely non-perturbative
problem, like tunnelling, or whether a pertubative approach starting from a different
decomposition of unperturbed Hamiltonian and perturbation would allow a meaningful
perturbation theory. Let us show that the second scenario holds.

4. The weak regulated potential

We have conjectured that asymptotic freedom is essential for perturbative renormalizability
in quantum mechanics. This leads us to trying to shift the high-energy scattering into
the free part of the Hamiltonian, so that the new interaction is asymptoticaly free. If our
conjecture is correct this should then allow a regularization which works both exactly and
perturbatively. This is indeed the case. Let us show how.

If the high-energy behaviour of the scattering amplitudes, equation (2.17), is subtracted,
equation (2.14) reads

ψ(x) = 2 cos(kx)θ(−x)+ ieik|x|(fs(k)+ (fa(k)− i)ε(x)
)

(4.1)

where ε(x) ≡ θ(x) − θ(−x) and (2.25) has been used. Equation (4.1) is not a good
starting point for perturbation theory, because the unperturbed wave vanishes onR+. Let
us therefore transform (4.1) under parity and under the substitution of (2.4):

ψ̃(−x) = 2 cos(kx)θ(x)+ ieik|x|(f̃s(k)− (f̃a(k)− i)ε(x)) (4.2)
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where f̃ (ρ, α, β, θ) = f (ρ, β, α,−θ). By summing and subtracting (4.1) and (4.2) one
obtains

ψ(+)(x) = cos(kx)+ ieik|x|(f (+)s (k)+ f (+)a (k)ε(x)
)

(4.3)

ψ(−)(x) = − cos(kx)ε(x)+ ieik|x|(f (−)s (k)+ f (−)a (k)ε(x)
)

(4.4)

where

f (+)s (k) ≡ 1

2

(
fs(k)+ f̃s(k)

) = 1

1

(
kρ(cosθ − 1)− k

2
(α + β)− iρ(α + β)− iαβ

)

f (+)a (k) ≡ 1

2

(
fa(k)− f̃a(k)

) = k

1

(
−iρ sinθ + 1

2
(α − β)

)

f (−)s (k) ≡ 1

2

(
fs(k)− f̃s(k)

) = k

1

(
−iρ sinθ − 1

2
(α − β)

)

f (−)a (k) ≡ 1

2

(
fa(k)+ f̃a(k)

)− i = 1

1

(
kρ(cosθ + 1)+ k

2
(α + β)+ iρ(α + β)+ iαβ

)
.

(4.5)

Note that the new scattering amplitudes all vanish at high energies. The new unperturbed
solutions are characterized by having vanishing derivatives at the origin, as corresponds to
ρ = α = β = θ = 0; recall equation (2.6).

Looking at the wavefuctions as given by equations (4.3) and (4.4) for each parameter
alone we note that they correspond toδ-interactions. So we expect that Dirac deltas appear
in some sense in the potential.

We will therefore regularize the interaction with Dirac deltas away from the origin.
Having in mind that Dirac deltas can be characterized in terms of a boundary condition, as
shown in (2.10), which we write as

1ψ ′(0) = λψ(0) ←→ λδ(x)ψ(x) (4.6)

we now rewrite equation (2.1) in a form which resembles (4.6). In order to do so, let us
split it into conditions on two boundaries, writingψL → ψ(−ε), ψR → ψ(ε), ψ ′L →
−1ψ(−ε) andψ ′R → 1ψ(ε), where we have takenψ ′(0) = 0. Then equation (2.1) is
substituted by

1ψ ′(−ε) = (ρ + α)ψ(−ε)− ρeiθψ(ε)

1ψ ′(ε) = −ρe−iθψ(−ε)+ (ρ + β)ψ(ε) .
(4.7)

In the limit ε → 0 equation (4.7) coincides with (2.1)
Comparing equations (4.7) and (4.6) immediately leads to the Schrödinger equation

− d2

dx2
ψ(x)+ (

(ρ + β)δ(x − ε)+ (ρ + α)δ(x + ε))ψ(x)
+ (−ρe−iθ δ(x − ε)− ρeiθ δ(x + ε))ψ(−x) = Eψ(x) (4.8)

subject to the boundary condition

ψ ′(0) = 0 . (4.9)
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Note that (4.8) is non-local. This non-locality is, however, avoided by just re-
writing (4.8) in terms of the parity eigenfunctions, i.e.ψs(x) ≡ 1

2

(
ψ(x) + ψ(−x)) and

ψa(x) ≡ 1
2

(
ψ(x)− ψ(−x)). Then equation (4.8) becomes[
− d2

dx2
+

(
Vss(x) Vsa(x)

Vas(x) Vaa(x)

)] (
ψs(x)

ψa(x)

)
= E

(
ψs(x)

ψa(x)

)
(4.10)

where the potentials are given by

Vss(x) = 1
2

(
α + β + 2ρ(1− cosθ)

)(
δ(x − ε)+ δ(x + ε))

Vaa(x) = 1
2

(
α + β + 2ρ(1+ cosθ)

)(
δ(x − ε)+ δ(x + ε))

Vsa(x) = − 1
2

(
α − β + 2iρ sinθ

)(
δ(x − ε)− δ(x + ε)) = V ∗as(x)

(4.11)

together with

ψ ′s(0) = ψ ′a(0) = 0 . (4.12)

The potential matrix has been written in such a way thatVss(x) andVaa(x) are symmetric
andVsa(x) = V ∗as(x) are antisymmetric. The solutions of equation (4.10) reproduces (4.3)
and (4.4) in the limitε → 0.

The interaction regulated in this way is actually a problem in the Hilbert space
L2(R+ ⊕ R−) instead ofL2(R) with potentials acting on each halfline. The complex
potentials are responsible for the probability flow between the halflines. This topological
feature of the contact interaction is of course unique to one dimension, it does not happen
in higher dimensions.

One can rewrite equation (4.8) with the help of the parity operator,P, and equation (4.11)
as

− d2

dx2
ψ(x)+ 1

2

[(
Vss(x)+ Vaa(x)

)+ (
Vas(x)+ Vsa(x)

)]
ψ(x)

+ 1

2

[(
Vss(x)− Vaa(x)

)+ (
Vas(x)− Vsa(x)

)]
Pψ(x) = Eψ(x) . (4.13)

It might seem surprising that the parity operator now appears in the regulated potential,
whereas the momentum operator appeared in (3.1). This is because the momentum operator
is not regularized when acting together with Dirac deltas and if the Dirac deltas are further
regularized, then it would act at the origin, where the wavefunction is allowed to be
discontinuous. The parity operator avoids these problems and still allows violation of time
reversal invariance, as can be seen from the term

(
Vas(x)− Vsa(x)

)
P, which is imaginary.

To perform pertubation theory starting from the Lippmann–Schwinger equation we need
the propagator corresponding to the unperturbed solutions of (4.3) and (4.4)

Gk(x, y) = i

2k

(
eik|x+y| + eik|x−y|) (

θ(x)θ(y)+ θ(−x)θ(−y)) (4.14)

which represents outgoing propagation that does not cross the origin and that satisfies the
adequate boundary conditions at the origin, i.e. vanishing derivatives.
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Using equations (4.11) and (4.14) one writes the Lippmann–Schwinger equation for
ψ(+)(x)(
ψ(+)
s (x)

ψ(+)
a (x)

)
=

(
cos(kx)

0

)
−

∫
dy Gk(x, y)

(
Vss(y) Vsa(y)

Vas(y) Vaa(y)

) (
ψ(+)
s (y)

ψ(+)
a (y)

)
(4.15)

which allows us to perform the perturbative expansion in a straightforward way. This
expansion can immediately be summed, and it reproduces the exact result (4.3) in the limit
ε → 0. The same can be done forψ(−)(x) with the same potential and we obtain the result
of (4.4).

Note that for theδ′, α = β = θ = 0, only Vaa(x) remains. It is symmetric but only
acts on the odd wavefunctions.

The four-parameter contact interaction is finally very elementary, as seen in
equation (4.11), once the unperturbed Hamiltonian and its acompanying boundary conditions
are properly chosen.

5. Conclusion

The most general point interaction in one-dimensional quantum mechanics depends on four
real parameters which determine the boundary conditions at the site of the interaction. We
present here, for the first time, a regulated potential which leads to a self-adjoint Hamiltonian
and which reproduces the same physics when the regulator is removed. Perturbation theory
built upon this regulated potential is, however, not renormalizable. The regulator cannot be
removed. We conjecture that this is because the interaction is not asymptotically free, i.e.
because there exists scattering at infinite energy. This reflects too strong a potential, which
thus cannot be iterated perturbatively.

We then present a different breakup of unperturbed Hamiltonian and interaction, for
which the interaction is asymptotically free. We give its regulated form, which allows both
the exact and the perturbative solution. This provides support to our conjecture.
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